Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 237(10): 3912-3926, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908202

RESUMO

The basic helix-loop-helix transcriptional factor, Bhlhe40 has been shown as a crucial regulator of immune response, tumorigenesis, and circadian rhythms. We identified Bhlhe40 as a possible regulator of osteoclast differentiation and function by shRNA library screening and found that Bhlhe40 was required for osteoclast activation. Bhlhe40 expression was induced in bone marrow macrophages (BMMs) by RANKL, whereas the expression of its homolog Bhlhe41 was decreased in osteoclastogenesis. µCT analysis of tibias revealed that Bhlhe40 knockout (KO) mice exhibited increased bone volume phenotype. Bone morphometric analysis showed that osteoclast number and bone resorption were decreased in Bhlhe40 KO mice, whereas significant differences in the osteoblast parameters were not seen between wild-type (WT) and Bhlhe40 KO mice. In vitro culture of BMMs showed that Bhlhe40 deficiency did not cause difference in osteoclast formation. In contrast, bone resorption activity of Bhlhe40 KO osteoclasts was markedly reduced in comparison with that of WT osteoclasts. Analysis of potential target genes of Bhlhe40 using data-mining platform ChIP-Atlas (http://chip-atlas.org) revealed that predicted target genes of Bhlhe40 were related to proton transport and intracellular vesicle acidification. We then analyzed the expression of proton pump, the vacuolar (V)-ATPases which are responsible for bone resorption. The expression of V-ATPases V1c1 and V0a3 was suppressed in Bhlhe40 KO osteoclasts. In addition, Lysosensor yellow/blue DND 160 staining demonstrated that vesicular acidification was attenuated in vesicles of Bhlhe40 KO osteoclasts. Furthermore, analysis with pH-sensitive fluorescent probe showed that proton secretion was markedly suppressed in Bhlhe40 KO osteoclasts compared to that in WT osteoclasts. Our findings suggest that Bhlhe40 plays a novel important role in the regulation of acid production in osteoclastic bone resorption.


Assuntos
Reabsorção Óssea , Osteoclastos , Adenosina Trifosfatases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reabsorção Óssea/metabolismo , Diferenciação Celular , Corantes Fluorescentes/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Osteoclastos/metabolismo , Bombas de Próton/metabolismo , Prótons , Ligante RANK/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo
2.
Nat Commun ; 12(1): 2792, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990599

RESUMO

ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Animais , Antineoplásicos/química , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Desenho de Fármacos , Descoberta de Drogas , Inibidores Enzimáticos/química , Feminino , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/genética , Oncogenes , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética
3.
FASEB J ; 35(2): e21281, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484199

RESUMO

Osteoclast bone resorption activity is critically regulated to maintain bone homeostasis. Osteoclasts resorb bone by producing protons and acid hydrolase via lysosomal secretion, however, a detailed mechanism remains elusive. PMEPA1 is a vesicular membrane protein, which binds to the NEDD4 family member of ubiquitin ligases. We have previously reported that Pmepa1 is highly expressed in bone resorbing osteoclasts, and regulates bone resorption. Here, we investigated the mechanism of bone resorption regulated by PMEPA1. Mutant mice lacking NEDD4-binding domains of PMEPA1 displayed enhanced bone volume, and reduced bone resorption activity in comparison with those of WT mice. Analysis with pH-sensitive fluorescence probe revealed that proton secretion from osteoclasts significantly decreased in Pmepa1 mutant osteoclasts. Immunofluorescence analysis revealed that PMEPA1 was colocalized with NEDD4, V0A3, and V0D2 subunits of vacuolar ATPase, which regulate the proton production of osteoclasts. In addition, Nedd4 knockdown reduced bone resorption and proton secretion of osteoclasts. Furthermore, Pmepa1 mutation and Nedd4 knockdown altered the cytoplasmic distribution of components of V-ATPase and expression of autophagy-related proteins, suggesting that lysosomal secretion is affected. Collectively, these findings indicate that PMEPA1 controls proton secretion from osteoclasts via NEDD4 by regulating vesicular trafficking, and NEDD4 is an important regulator of bone resorption.


Assuntos
Reabsorção Óssea/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Osteoclastos/metabolismo , Prótons , Animais , Autofagia , Sítios de Ligação , Células Cultivadas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Ligação Proteica , Transporte Proteico , Vesículas Transportadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
Cells ; 9(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952347

RESUMO

PDCD4 (programmed cell death 4) is a tumor suppressor that plays a crucial role in multiple cellular functions, such as the control of protein synthesis and transcriptional control of some genes, the inhibition of cancer invasion and metastasis. The expression of this protein is controlled by synthesis, such as via transcription and translation, and degradation by the ubiquitin-proteasome system. The mitogens, known as tumor promotors, EGF (epidermal growth factor) and TPA (12-O-tetradecanoylphorbol-13-acetate) stimulate the degradation of PDCD4 protein. However, the whole picture of PDCD4 degradation mechanisms is still unclear, we therefore investigated the relationship between PDCD4 and autophagy. The proteasome inhibitor MG132 and the autophagy inhibitor bafilomycin A1 were found to upregulate the PDCD4 levels. PDCD4 protein levels increased synergistically in the presence of both inhibitors. Knockdown of p62/SQSTM1 (sequestosome-1), a polyubiquitin binding partner, also upregulated the PDCD4 levels. P62 and LC3 (microtubule-associated protein 1A/1B-light chain 3)-II were co-immunoprecipitated by an anti-PDCD4 antibody. Colocalization particles of PDCD4, p62 and the autophagosome marker LC3 were observed and the colocalization areas increased in the presence of autophagy and/or proteasome inhibitor(s) in Huh7 cells. In ATG (autophagy related) 5-deficient Huh7 cells in which autophagy was impaired, the PDCD4 levels were increased at the basal levels and upregulated in the presence of autophagy inhibitors. Based on the above findings, we concluded that after phosphorylation in the degron and ubiquitination, PDCD4 is degraded by both the proteasome and autophagy systems.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteínas de Ligação a RNA/metabolismo , Proteínas Reguladoras de Apoptose/genética , Humanos , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas
5.
FASEB J ; 33(3): 4365-4375, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557043

RESUMO

Osteoclasts derived from hematopoietic cells are activated on bone surface. To resorb bone, osteoclasts release acid and lysosome acid hydrolase via membrane transport. Prostate transmembrane protein androgen induced 1 (Pmepa1) is a type I transmembrane protein that regulates proliferation, migration, and metastasis of cancer cells. Because recent reports showed that Pmepa1 is involved in membrane transport in cancer cells, we investigated the role of Pmepa1 in osteoclast function. Pmepa1 expression was barely detected in osteoclasts formed on plastic surfaces in vitro, but was markedly increased in activated osteoclasts formed on calcified matrix. Inhibitors of bone resorption, such as alendronate, bafilomycin A1, and the PI3K inhibitor LY294002, suppressed the expression of Pmepa1 in osteoclasts. Knockdown of Pmepa1 expression impaired bone resorption activity and inhibited formation of a ring-like, actin-rich podosome belt that is essential for osteoclast function. Pmepa1 protein localized to lysosomes in osteoclasts. In addition, in sites of bone destruction observed in rats with adjuvant-induced arthritis, a marked high level of Pmepa1 expression was associated with the osteoclasts' resorbing bone. Our results suggest that Pmepa1 is a critical regulator of bone resorption and is a promising marker for activated osteoclasts and a potential therapeutic target in pathologic bone destruction.-Xu, X., Hirata, H., Shiraki, M., Kamohara, A., Nishioka, K., Miyamoto, H., Kukita, T., Kukita, A. Prostate transmembrane protein androgen induced 1 is induced by activation of osteoclasts and regulates bone resorption.


Assuntos
Reabsorção Óssea/metabolismo , Proteínas de Membrana/fisiologia , Osteoclastos/metabolismo , Animais , Artrite Experimental/metabolismo , Calcimicina/farmacologia , Adesão Celular , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular , Células Cultivadas , Cromonas/farmacologia , Dentina , Lisossomos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Ubiquitina-Proteína Ligases Nedd4/biossíntese , Ubiquitina-Proteína Ligases Nedd4/genética , Osteopontina/farmacologia , Plásticos , Podossomos/metabolismo , Ligante RANK/farmacologia , Ratos Endogâmicos Lew , Fator de Crescimento Transformador beta/farmacologia
6.
Nat Commun ; 9(1): 5026, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487570

RESUMO

Myoblast fusion (MF) is required for muscle growth and repair, and its alteration contributes to muscle diseases. The mechanisms governing this process are incompletely understood, and no epigenetic regulator has been previously described. Ash1L is an epigenetic activator belonging to the Trithorax group of proteins and is involved in FSHD muscular dystrophy, autism and cancer. Its physiological role in skeletal muscle is unknown. Here we report that Ash1L expression is positively correlated with MF and reduced in Duchenne muscular dystrophy. In vivo, ex vivo and in vitro experiments support a selective and evolutionary conserved requirement for Ash1L in MF. RNA- and ChIP-sequencing indicate that Ash1L is required to counteract Polycomb repressive activity to allow activation of selected myogenesis genes, in particular the key MF gene Cdon. Our results promote Ash1L as an important epigenetic regulator of MF and suggest that its activity could be targeted to improve cell therapy for muscle diseases.


Assuntos
Moléculas de Adesão Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase/genética , Camundongos , Camundongos Endogâmicos C57BL , Distrofias Musculares
7.
Sci Rep ; 8(1): 12128, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108332

RESUMO

Polycomb silencing is an important and rapidly growing field that is relevant to a broad range of aspects of human health, including cancer and stem cell biology. To date, the regulatory mechanisms for the fine-tuning of Polycomb silencing remain unclear, but it is likely that there is a series of unidentified factors that functionally modify or balance the silencing. However, a practical gene screening strategy for identifying such factors has not yet been developed. The failure of screening strategies used thus far is probably due to the effect of the loss-of-function phenotypes of these factors on cell cycle progression. Here, by applying fluorescence-activated cell sorter (FACS) and high-throughput sequencing (HTS) technology in a large-scale lentivirus-mediated shRNA screening, we obtained a consecutive dataset from all shRNAs tested, which highlighted a substantial number of genes that may control Polycomb silencing. We consider that this unbiased strategy can readily be applied to a wide range of studies to uncover novel regulatory layers for expression of genes of interest.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas do Grupo Polycomb/genética , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular Tumoral , Separação Celular/métodos , Conjuntos de Dados como Assunto , Citometria de Fluxo/métodos , Genes Reporter/genética , Vetores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lentivirus/genética , Camundongos , Células-Tronco Embrionárias Murinas , Interferência de RNA
8.
Epigenetics Chromatin ; 11(1): 28, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875017

RESUMO

BACKGROUND: Zrsr1 is a paternally expressed imprinted gene located in the first intron of Commd1, and the Zrsr1 promoter resides in a differentially methylated region (DMR) that is maternally methylated in the oocyte. However, a mechanism for the establishment of the methylation has remained obscure. Commd1 is transcribed in the opposite direction to Zrsr1 with predominant maternal expression, especially in the adult brain. RESULTS: We found Commed1 transcribed through the DMR in the growing oocyte. Zrsr1-DMR methylation was abolished by the prevention of Commd1 transcription. Furthermore, methylation did not occur at the artificially unmethylated maternal Zrsr1-DMR during embryonic development when transcription through the DMR was restored in the zygote. Loss of methylation at the maternal Zrsr1-DMR resulted in biallelic Zrsr1 expression and reduced the extent of the predominant maternal expression of Commd1. CONCLUSIONS: These results indicate that the establishment of methylation at Zrsr1-DMR occurs in a transcription-dependent and oocyte-specific manner and caused Zrsr1 imprinting by repressing maternal expression. The predominant maternal expression of Commd1 is likely caused by transcriptional interference by paternal Zrsr1 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Metilação de DNA , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Oócitos/crescimento & desenvolvimento , Ribonucleoproteínas/genética , Transcrição Gênica , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Camundongos , Oócitos/química , Especificidade de Órgãos , Gravidez , Regiões Promotoras Genéticas , Fator de Processamento U2AF
9.
Development ; 145(5)2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523653

RESUMO

Under stress conditions, the coactivator Multiprotein bridging factor 1 (Mbf1) translocates from the cytoplasm into the nucleus to induce stress-response genes. However, its role in the cytoplasm, where it is mainly located, has remained elusive. Here, we show that Drosophila Mbf1 associates with E(z) mRNA and protects it from degradation by the exoribonuclease Pacman (Pcm), thereby ensuring Polycomb silencing. In genetic studies, loss of mbf1 function enhanced a Polycomb phenotype in Polycomb group mutants, and was accompanied by a significant reduction in E(z) mRNA expression. Furthermore, a pcm mutation suppressed the Polycomb phenotype and restored the expression level of E(z) mRNA, while pcm overexpression exhibited the Polycomb phenotype in the mbf1 mutant but not in the wild-type background. In vitro, Mbf1 protected E(z) RNA from Pcm activity. Our results suggest that Mbf1 buffers fluctuations in Pcm activity to maintain an E(z) mRNA expression level sufficient for Polycomb silencing.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Exorribonucleases/metabolismo , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Interferência de RNA , Estabilidade de RNA/genética , Transativadores/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Exorribonucleases/genética , Feminino , Masculino , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo
10.
Hum Mol Genet ; 25(7): 1406-19, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908620

RESUMO

Uniparental disomy (UPD) is defined as the inheritance of both homologs of a given genomic region from only one parent. The majority of UPD includes an entire chromosome. However, the extent of UPD is sometimes limited to a subchromosomal region (segmental UPD). Mosaic paternal UPD (pUPD) of chromosome 11 is found in approximately 20% of patients with Beckwith-Wiedemann syndrome (BWS) and almost all pUPDs are segmental isodisomic pUPDs resulting from mitotic recombination at an early embryonic stage. A mechanism initiating a DNA double strand break (DSB) within 11p has been predicted to lead to segmental pUPD. However, no consensus motif has yet been found. Here, we analyzed 32 BWS patients with pUPD by SNP array and searched for consensus motifs. We identified four consensus motifs frequently appearing within breakpoint regions of segmental pUPD. These motifs were found in another nine BWS patients with pUPD. In addition, the seven motifs found in meiotic recombination hot spots could not be found within pUPD breakpoint regions. Histone H3 lysine 4 trimethylation, a marker of DSB initiation, could not be found either. These findings suggest that the mechanism(s) of mitotic recombination leading to segmental pUPD are different from that of meiotic recombination. Furthermore, we found seven patients with paternal uniparental diploidy (PUD) mosaicism. Comparison of clinical features between segmental pUPDs and PUDs showed that developmental disability and cardiac abnormalities were additional characteristic features of PUD mosaicism, along with high risk of tumor development. We also found that macroglossia was characteristic of segmental pUPD mosaicism.


Assuntos
Mitose , Recombinação Genética , Dissomia Uniparental/genética , Síndrome de Beckwith-Wiedemann , Cromossomos Humanos Par 11/genética , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Mosaicismo , Dissomia Uniparental/etiologia
11.
Gene ; 583(2): 141-146, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26911255

RESUMO

Aberrant DNA methylation is associated with a range of human disorders. To identify differences in DNA methylation of gene promoters between placentas of low-birth-weight (LBW) and normal-birth-weight (NBW) infants, we screened 8091 genes for aberrant methylation in placentas using microarray-based integrated analysis of methylation by isoschizomers (MIAMI). Seven candidate genes for hypomethylation in the placentas of LBW infants were selected. Among these candidates, COBRA analyses suggested that the HUS1B gene was hypomethylated in some of the placentas. Quantitative methylation analyses by bisulfite-pyrosequencing indicated that the promoter region of the gene was hypomethylated in three of the 86 placentas analyzed. The HUS1B promoter was highly methylated in two cell lines derived from trophoblastic cells. Gene expression increased when the promoter was demethylated by 5Aza-dC treatment. This suggests that hypomethylation of HUS1B alters gene expression in the placenta and that this dysregulated gene expression may contribute to the pathogenesis of LBW by affecting placental functions involved in fetal growth.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Recém-Nascido de Baixo Peso , Placenta/metabolismo , Regiões Promotoras Genéticas , Peso ao Nascer , Proteínas de Ciclo Celular/genética , Linhagem Celular , Metilação de DNA , Epigênese Genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Gravidez , Análise Serial de Tecidos
12.
Genet Med ; 16(12): 903-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24810686

RESUMO

PURPOSE: Expression of imprinted genes is regulated by DNA methylation of differentially methylated regions (DMRs). Beckwith-Wiedemann syndrome is an imprinting disorder caused by epimutations of DMRs at 11p15.5. To date, multiple methylation defects have been reported in Beckwith-Wiedemann syndrome patients with epimutations; however, limited numbers of DMRs have been analyzed. The susceptibility of DMRs to aberrant methylation, alteration of gene expression due to aberrant methylation, and causative factors for multiple methylation defects remain undetermined. METHODS: Comprehensive methylation analysis with two quantitative methods, matrix-assisted laser desorption/ionization mass spectrometry and bisulfite pyrosequencing, was conducted across 29 DMRs in 54 Beckwith-Wiedemann syndrome patients with epimutations. Allelic expressions of three genes with aberrant methylation were analyzed. All DMRs with aberrant methylation were sequenced. RESULTS: Thirty-four percent of KvDMR1-loss of methylation patients and 30% of H19DMR-gain of methylation patients showed multiple methylation defects. Maternally methylated DMRs were susceptible to aberrant hypomethylation in KvDMR1-loss of methylation patients. Biallelic expression of the genes was associated with aberrant methylation. Cis-acting pathological variations were not found in any aberrantly methylated DMR. CONCLUSION: Maternally methylated DMRs may be vulnerable to DNA demethylation during the preimplantation stage, when hypomethylation of KvDMR1 occurs, and aberrant methylation of DMRs affects imprinted gene expression. Cis-acting variations of the DMRs are not involved in the multiple methylation defects.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA , Predisposição Genética para Doença , Impressão Genômica , Mutação , Adolescente , Alelos , Criança , Pré-Escolar , DNA/química , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
BMC Cancer ; 13: 608, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24373183

RESUMO

BACKGROUND: Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors. METHODS: The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms. RESULTS: Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations. CONCLUSIONS: Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma.


Assuntos
Metilação de DNA , Epigênese Genética , Impressão Genômica , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Criança , Pré-Escolar , Feminino , Hepatoblastoma/patologia , Humanos , Lactente , Neoplasias Hepáticas/patologia , Elementos Nucleotídeos Longos e Dispersos , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
PLoS Genet ; 9(11): e1003897, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244179

RESUMO

Molecular mechanisms for the establishment of transcriptional memory are poorly understood. 5,6-dichloro-1-D-ribofuranosyl-benzimidazole (DRB) is a P-TEFb kinase inhibitor that artificially induces the poised RNA polymerase II (RNAPII), thereby manifesting intermediate steps for the establishment of transcriptional activation. Here, using genetics and DRB, we show that mammalian Absent, small, or homeotic discs 1-like (Ash1l), a member of the trithorax group proteins, methylates Lys36 of histone H3 to promote the establishment of Hox gene expression by counteracting Polycomb silencing. Importantly, we found that Ash1l-dependent Lys36 di-, tri-methylation of histone H3 in a coding region and exclusion of Polycomb group proteins occur independently of transcriptional elongation in embryonic stem (ES) cells, although both were previously thought to be consequences of transcription. Genome-wide analyses of histone H3 Lys36 methylation under DRB treatment have suggested that binding of the retinoic acid receptor (RAR) to a certain genomic region promotes trimethylation in the RAR-associated gene independent of its ongoing transcription. Moreover, DRB treatment unveils a parallel response between Lys36 methylation of histone H3 and occupancy of either Tip60 or Mof in a region-dependent manner. We also found that Brg1 is another key player involved in the response. Our results uncover a novel regulatory cascade orchestrated by Ash1l with RAR and provide insights into mechanisms underlying the establishment of the transcriptional activation that counteracts Polycomb silencing.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Animais , Cromatina/genética , Proteínas de Ligação a DNA/genética , Diclororribofuranosilbenzimidazol/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Inativação Gênica , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/genética , Humanos , Lisina/genética , Metilação , Proteínas Nucleares/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
15.
Eur J Hum Genet ; 21(11): 1316-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23486540

RESUMO

Perlman syndrome is a rare, autosomal recessive overgrowth disorder. Recently, the deletion of exon 9 and other mutations of the DIS3L2 gene have been reported in patients; however, the mechanism behind this deletion is still unknown. We report the homozygous deletion of exon 9 of DIS3L2 in a Japanese patient with Perlman syndrome. We identified the deletion junction, and implicate a non-allelic homologous recombination (NAHR) between two LINE-1 (L1) elements as the causative mechanism. Furthermore, the deletion junctions were different between the paternal and maternal mutant alleles, suggesting the occurrence of two independent NAHR events in the ancestors of each parent. The data suggest that the region around exon 9 might be a hot spot of L1-mediated NAHR.


Assuntos
Alelos , Povo Asiático/genética , Éxons/genética , Exorribonucleases/genética , Macrossomia Fetal/genética , Recombinação Homóloga/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Deleção de Sequência/genética , Tumor de Wilms/genética , Sequência de Bases , Evolução Fatal , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular
16.
Genes Dev ; 21(5): 552-61, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17344416

RESUMO

Epigenetic maintenance of the expression state of the genome is critical for development. Drosophila GAGA factor interacts with FACT and modulates chromatin structure for the maintenance of gene expression. Here we show that the GAGA factor-FACT complex and its binding site just downstream from the white gene are crucial for position effect variegation. Interestingly there is a dip of histone H3 Lys 9 methylation and a peak of H3 Lys 4 methylation at this site. The GAGA factor and FACT direct replacement of histone H3 by H3.3 through association of HIRA at this site, and maintain white expression under the heterochromatin environment. Based on these findings we propose that the GAGA factor and FACT-dependent replacement of Lys 9-methylated histone H3 by H3.3 counteracts the spreading of silent chromatin.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Heterocromatina/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Drosophila/genética , Cor de Olho/genética , Proteínas do Olho/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Metilação
17.
Acta Neuropathol ; 109(3): 256-62, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15841414

RESUMO

Oxidative stress including DNA oxidation is implicated in Parkinson's disease (PD). We postulated that DNA repair enzymes such as 8-oxoguanosine DNA glycosylase (OGG1) are involved in the PD process. We performed immunohistochemical and biochemical studies on brains of patients with PD and those of patients with progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) as disease controls, and control subjects. We found higher expression levels of mitochondrial isoforms of OGG1 enzymes in the substantia nigra (SN) in cases of PD. Furthermore, Western blot analysis revealed high OGG1 levels in the SN of the patients with PD. Our results indicate the importance of oxidative stress within the susceptible lesions in the pathogenesis of PD.


Assuntos
Doenças dos Gânglios da Base/enzimologia , Encéfalo/enzimologia , DNA Glicosilases/metabolismo , Regulação da Expressão Gênica/fisiologia , Doença de Parkinson/enzimologia , Paralisia Supranuclear Progressiva/enzimologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Western Blotting/métodos , Encéfalo/patologia , Estudos de Casos e Controles , Contagem de Células/métodos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Mudanças Depois da Morte , Frações Subcelulares/enzimologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Proc Natl Acad Sci U S A ; 100(21): 12033-8, 2003 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-14530408

RESUMO

The functional capacity of genetically encoded histone proteins can be powerfully expanded by posttranslational modification. A growing body of biochemical and genetic evidence clearly links the unique combinatorial patterning of side chain acetylation, methylation, and phosphorylation mainly within the highly conserved N termini of histones H2A, H2B, H3, and H4 with the regulation of gene expression and chromatin assembly and remodeling, in effect constituting a "histone code" for epigenetic signaling. Deconvoluting this code has proved challenging given the inherent posttranslational heterogeneity of histone proteins isolated from biological sources. Here we describe the application of native chemical ligation to the preparation of full-length histone proteins containing site-specific acetylation and methylation modifications. Peptide thioesters corresponding to histone N termini were prepared by solid phase peptide synthesis using an acid labile Boc/HF assembly strategy, then subsequently ligated to recombinantly produced histone C-terminal globular domains containing an engineered N-terminal cysteine residue. The ligation site is then rendered traceless by hydrogenolytic desulfurization, generating a native histone protein sequence. Synthetic histones generated by this method are fully functional, as evidenced by their self-assembly into a higher order H3/H4 heterotetramer, their deposition into nucleosomes by human ISWI-containing (Imitation of Switch) factor RSF (Remodeling and Spacing Factor), and by enzymatic modification by human Sirt1 deacetylase and G9a methyltransferase. Site-specifically modified histone proteins generated by this method will prove invaluable as novel reagents for the evaluation of the histone code hypothesis and analysis of epigenetic signaling mechanisms.


Assuntos
Histonas/biossíntese , Histonas/genética , Acetilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cromatina/metabolismo , Histonas/química , Humanos , Técnicas In Vitro , Indicadores e Reagentes , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...